Almost sure hedging with price impact

B. Bouchard
Ceremade - Université Paris-Dauphine, PSL University

Joint works with G. Loeper (Monash Univ.), M. Soner (ETH Zürich),
C. Zhou (NUS) and Y. Zou (ex Paris-Dauphine)

Motivation

Motivation

$\square \mathrm{BS}$ and local (stochastic) vol models :

- Are useful because they provide a clear hedging rule
- Disregard frictions because do not work at high frequency
- Taking costs into account would lead to useless degenerate prices/strategies (in theory) and is helpless. We are not working at the level of the order book.

Motivation

$\square \mathrm{BS}$ and local (stochastic) vol models :

- Are useful because they provide a clear hedging rule
- Disregard frictions because do not work at high frequency
- Taking costs into account would lead to useless degenerate prices/strategies (in theory) and is helpless. We are not working at the level of the order book.
\square However:
- Do not take price impact and illiquidity into account
- Problematic when large positions (possibly shared) or illiquid underlying (may run after the delta)

Motivation

$\square \mathrm{BS}$ and local (stochastic) vol models :

- Are useful because they provide a clear hedging rule
- Disregard frictions because do not work at high frequency
- Taking costs into account would lead to useless degenerate prices/strategies (in theory) and is helpless. We are not working at the level of the order book.
\square However:
- Do not take price impact and illiquidity into account
- Problematic when large positions (possibly shared) or illiquid underlying (may run after the delta)
\square Question : Can we built a model which
- Takes price impact and illiquidity into account
- Leads to a clear hedging and pricing rule
- Does not have embedded hidden transaction costs (otherwise the super-hedging price would be degenerate)

Some references

\square Many works on hedging with illiquidity or impact : Sircar and Papanicolaou 98, Schönbucher and Wilmot 00, Frey 98, Cetin, Jarrow and Protter 04, Bank and Baum 04, Liu and Yong 05, Cetin, Soner and Touzi 09, Millot and Abergel 11, Frey and Polte 11, Almgren and Li 13, Guéant and Pu 13,...
\square Illiquidity + impact + perfect hedging : Loeper 14/16 (verification arguments).
\square Past and ongoing related works by D. Becherer and T. Bilarev.

Impact rule and continuous time trading dynamics

Impact rule

\square Basic rule (only permanent for the moment) : an order of δ units moves the price by

$$
X_{t-} \longrightarrow X_{t}=X_{t-}+\delta f\left(X_{t-}\right), \quad[\text { permanent impact }]
$$

and costs

$$
\delta X_{t-}+\frac{1}{2} \delta^{2} f\left(X_{t-}\right)=\delta \frac{X_{t-}+X_{t}}{2} \quad \text { [liquidity cost] }
$$

Impact rule

\square Basic rule (only permanent for the moment) : an order of δ units moves the price by

$$
X_{t-} \longrightarrow X_{t}=X_{t-}+\delta f\left(X_{t-}\right), \quad[\text { permanent impact }]
$$

and costs

$$
\delta X_{t-}+\frac{1}{2} \delta^{2} f\left(X_{t-}\right)=\delta \frac{X_{t-}+X_{t}}{2} \quad[\text { liquidity cost }]
$$

\square We just model the curve around $\delta=0$. This should be understood for a "small" order δ.

Impact rule

\square Basic rule (only permanent for the moment) : an order of δ units moves the price by

$$
\left.X_{t-} \longrightarrow X_{t}=X_{t-}+\delta f\left(X_{t-}\right), \quad \text { [permanent impact }\right]
$$

and costs

$$
\delta X_{t-}+\frac{1}{2} \delta^{2} f\left(X_{t-}\right)=\delta \frac{X_{t-}+X_{t}}{2} \quad[\text { liquidity cost }]
$$

\square We just model the curve around $\delta=0$. This should be understood for a "small" order δ. Would obtain the same with

$$
X_{t-} \longrightarrow X_{t}=X_{t-}+F\left(X_{t-}, \delta\right)
$$

and costs

$$
\int_{0}^{\delta}\left(X_{t-}+F\left(X_{t-}, \iota\right)\right) d \iota
$$

if $\partial_{\delta} F(x, 0)=f(x), \partial_{\delta x}^{2} F(x, 0)=f^{\prime}(x)$ and $F(x, 0)=\partial_{\delta \delta}^{2} F(x, 0)=0$.

Trading signal and discrete trading dynamics

\square A trading signal is an Itô process controlled by (a, b) :

$$
Y=Y_{0}+\int_{0} b_{s} d s+\int_{0} a_{s} d W_{s}
$$

Trading signal and discrete trading dynamics

\square A trading signal is an Itô process controlled by (a, b) :

$$
Y=Y_{0}+\int_{0} b_{s} d s+\int_{0} a_{s} d W_{s}
$$

\square Need to define the dynamics of the wealth and of the asset. As usual, consider discrete trading and pass to the limit : continuous time is an approximation, it should be consistent with discrete (hedging) limits.

Trading signal and discrete trading dynamics

\square A trading signal is an Itô process controlled by (a, b) :

$$
Y=Y_{0}+\int_{0} b_{s} d s+\int_{0} a_{s} d W_{s}
$$

\square Need to define the dynamics of the wealth and of the asset. As usual, consider discrete trading and pass to the limit : continuous time is an approximation, it should be consistent with discrete (hedging) limits.
\square Trade at times $t_{i}^{n}=i T / n$ (for simplicity) the quantities $\delta_{t_{i}^{n}}^{n}=Y_{t_{i}^{n}}-Y_{t_{i-1}^{n}}$.

Trading signal and discrete trading dynamics

\square A trading signal is an Itô process controlled by (a, b) :

$$
Y=Y_{0}+\int_{0} b_{s} d s+\int_{0} a_{s} d W_{s} .
$$

\square Need to define the dynamics of the wealth and of the asset. As usual, consider discrete trading and pass to the limit : continuous time is an approximation, it should be consistent with discrete (hedging) limits.
\square Trade at times $t_{i}^{n}=i T / n$ (for simplicity) the quantities $\delta_{t_{i}^{n}}^{n}=Y_{t_{i}^{n}}-Y_{t_{i-1}^{n}}$.We assume that the stock price evolves according to

$$
X=X_{t_{i}^{n}}+\int_{t_{i}^{n}} \sigma\left(X_{s}\right) d W_{s}
$$

between two trades (can add a drift - or resilience effect, see Becherer and Bilarev 18).The corresponding dynamics are

$$
\begin{aligned}
& Y_{t}^{n}:=\sum_{i=0}^{n-1} Y_{t_{i}^{t}} \mathbf{1}_{\left\{t_{i}^{n} \leq t<t_{i+1}^{n}\right\}}+Y_{T} \mathbf{1}_{\{t=T\}}, \delta_{t_{i}^{n}}^{n}=Y_{t_{i}^{n}}^{n}-Y_{t_{i-1}^{n}}^{n} \\
& X^{n}=X_{0}+\int_{0} \sigma\left(X_{s}^{n}\right) d W_{s}+\sum_{i=1}^{n} \mathbf{1}_{\left[t_{i}^{n}, T\right]} \delta_{t_{i}^{n}}^{n} f\left(X_{t_{i}^{n}-}^{n}\right), \\
& V^{n}=V_{0}+\int_{0} Y_{s-}^{n} d X_{s}^{n}+\sum_{i=1}^{n} \mathbf{1}_{\left[t_{i}^{n}, T\right]} \frac{1}{2}\left(\delta_{t_{i}^{n}}^{n}\right)^{2} f\left(X_{t_{i}^{n-}}^{n}\right),
\end{aligned}
$$

where

$$
V^{n}:=\text { cash part }+Y^{n} X^{n}=\text { "portfolio value". }
$$

\square Passing to the limit $n \rightarrow \infty$, it converges in \mathbf{S}_{2} to

$$
\begin{aligned}
& Y=Y_{0}+\int_{0} b_{s} d s+\int_{0} a_{s} d W_{s} \\
& X=X_{0}+\int_{0}^{0} \sigma\left(X_{s}\right) d W_{s}+\underbrace{\int_{0}^{0} f\left(X_{s}\right) d Y_{s}+\int_{0}^{0} a_{s}\left(\sigma f^{\prime}\right)\left(X_{s}\right) d s}_{\left(Y_{i_{i}^{n}}^{n}-Y_{t t_{i-1}^{n}}^{n}\right) f\left(X_{t_{i}^{n}-}^{n}\right)} \\
& V=V_{0}+\int_{0}^{\cdot} Y_{s} d X_{s}+\frac{1}{2} \underbrace{\int_{0}^{r} a_{s}^{2} f\left(X_{s}\right) d s}_{\left(Y_{t_{i}^{n}}^{n}-Y_{t_{i-1}^{n}}^{n}\right)^{2 f} f\left(X_{t_{i}^{n}-1}^{n}\right)},
\end{aligned}
$$

at a speed \sqrt{n}.

Hedging problem(s)

1. Uncovered options.
2. Covered options.
3. Covered options in a generalized model.

The case of uncovered options

B., G. Loeper, and Y. Zou. Almost-sure hedging with permanent price impact.

Finance and Stochastics, 20(3), 741-771, 2016.Premium paid in cash and one delivers exactly the amount of cash and stocks prescribed by the payoff.

The case of uncovered options

B., G. Loeper, and Y. Zou. Almost-sure hedging with permanent price impact.

Finance and Stochastics, 20(3), 741-771, 2016.Premium paid in cash and one delivers exactly the amount of cash and stocks prescribed by the payoff.Has an initial impact when build the initial position in stocks and a final impact when liquidate it at the end.

The case of uncovered options

B., G. Loeper, and Y. Zou. Almost-sure hedging with permanent price impact.

Finance and Stochastics, 20(3), 741-771, 2016.Premium paid in cash and one delivers exactly the amount of cash and stocks prescribed by the payoff.Has an initial impact when build the initial position in stocks and a final impact when liquidate it at the end.
\square Super-hedging price :
$\mathrm{v}=\inf \left\{\right.$ initial cash $: \exists(a, b)$ s.t. $V_{T}-Y_{T} X_{T} \geq g_{0}\left(X_{T}\right)$ and $\left.Y_{T}=g_{1}\left(X_{T}\right)\right\}$.
(Recall that $V=$ cash $+Y X$)

The case of uncovered options

B., G. Loeper, and Y. Zou. Almost-sure hedging with permanent price impact.

Finance and Stochastics, 20(3), 741-771, 2016.Premium paid in cash and one delivers exactly the amount of cash and stocks prescribed by the payoff.
\square Has an initial impact when build the initial position in stocks and a final impact when liquidate it at the end.
\square Super-hedging price :
$\mathrm{v}=\inf \left\{\right.$ initial cash $: \exists(a, b)$ s.t. $V_{T}-Y_{T} X_{T} \geq g_{0}\left(X_{T}\right)$ and $\left.Y_{T}=g_{1}\left(X_{T}\right)\right\}$.
(Recall that $V=$ cash $+Y X$)Issue : needs to jump to a certain initial or final delta !

Adding jumps and splitting of large orders

\square We now consider a trading signal of the form

$$
Y=Y_{0-}+\int_{0} b_{s} d s+\int_{0} a_{s} d W_{s}+\int_{0} \delta \nu(d \delta, d s)
$$

Adding jumps and splitting of large orders

\square We now consider a trading signal of the form

$$
Y=Y_{0-}+\int_{0} b_{s} d s+\int_{0} a_{s} d W_{s}+\int_{0} \delta \nu(d \delta, d s)
$$

\square Jumps δ_{i} at time τ_{i} is passed on $\left[\tau_{i}, \tau_{i}+\varepsilon\right]$ at a rate δ_{i} / ε.

The limit dynamics when $\varepsilon \rightarrow 0$ is

$$
\begin{aligned}
X= & X_{0-}+\int_{0} \sigma\left(X_{s}\right) d W_{s}+\int_{0} f\left(X_{s}\right) d Y_{s}^{c}+\int_{0} a_{s} \sigma f^{\prime}\left(X_{s}\right) d s \\
& +\int_{0} \int \Delta \mathrm{x}\left(X_{s-}, \delta\right) \nu(d \delta, d s) \\
V= & V_{0-}+\int_{0} Y_{s} d X_{s}^{c}+\frac{1}{2} \int_{0} a_{s}^{2} f\left(X_{s}\right) d s \\
& +\int_{0} \int\left(Y_{s-} \Delta \mathrm{x}\left(X_{s-}, \delta\right)+\Im\left(X_{s-}, \delta\right)\right) \nu(d \delta, d s) .
\end{aligned}
$$

in which

$$
\begin{aligned}
& \qquad \Delta \mathrm{x}(x, \delta)+x=\mathrm{x}(x, \delta):=x+\int_{0}^{\delta} f(\mathrm{x}(x, s)) d s \\
& \text { and } \mathfrak{I}(x, \delta):=\int_{0}^{\delta} s f(\mathrm{x}(x, s)) d s \text {. }
\end{aligned}
$$

Dynamic programming

\square Modified geometric dynamic programming :

$$
\begin{gathered}
v \geq \mathrm{v}(0, x) \\
\text { "if and only if" } \\
V_{\theta} \geq \mathrm{v}\left(\theta, \mathrm{x}\left(X_{\theta},-Y_{\theta}\right)\right)+\mathfrak{I}\left(\mathrm{x}\left(X_{\theta},-Y_{\theta}\right), Y_{\theta}\right) \text { for some }(a, b, \nu)
\end{gathered}
$$

Dynamic programming

\square Modified geometric dynamic programming :

$$
\begin{gathered}
v \geq \mathrm{v}(0, x) \\
\text { "if and only if" } \\
V_{\theta} \geq \mathrm{v}\left(\theta, \mathrm{x}\left(X_{\theta},-Y_{\theta}\right)\right)+\mathfrak{I}\left(\mathrm{x}\left(X_{\theta},-Y_{\theta}\right), Y_{\theta}\right) \text { for some }(a, b, \nu)
\end{gathered}
$$

\square Can then apply standard stochastic target technics.

Pricing equation

\square A quasi-linear pde

$$
0=-\partial_{t} \mathrm{v}-\hat{\mu}(\cdot, \hat{y}) \partial_{x}[\mathrm{v}+\Im]-\frac{1}{2} \hat{\sigma}(\cdot, \hat{y})^{2} \partial_{x x}^{2}[\mathrm{v}+\Im]
$$

where

$$
\hat{\mu}(\cdot, y):=\frac{1}{2}\left[\partial_{x x}^{2} \mathrm{x} \sigma^{2}\right](\mathrm{x}(\cdot, y),-y) \text { and } \hat{\sigma}(\cdot, y):=\left(\sigma \partial_{x} \mathrm{x}\right)(\mathrm{x}(\cdot, y),-y),
$$

and

$$
\hat{y}(t, x):=\mathrm{x}^{-1}\left(x, x+f(x) \partial_{x} \mathrm{v}(t, x)\right) .
$$

Pricing equation

\square A quasi-linear pde

$$
0=-\partial_{t} \mathrm{v}-\hat{\mu}(\cdot, \hat{y}) \partial_{x}[\mathrm{v}+\Im]-\frac{1}{2} \hat{\sigma}(\cdot, \hat{y})^{2} \partial_{x x}^{2}[\mathrm{v}+\Im]
$$

where

$$
\hat{\mu}(\cdot, y):=\frac{1}{2}\left[\partial_{x x}^{2} \mathrm{x} \sigma^{2}\right](\mathrm{x}(\cdot, y),-y) \text { and } \hat{\sigma}(\cdot, y):=\left(\sigma \partial_{x} \mathrm{x}\right)(\mathrm{x}(\cdot, y),-y),
$$

and

$$
\hat{y}(t, x):=\mathrm{x}^{-1}\left(x, x+f(x) \partial_{x} \mathrm{v}(t, x)\right) .
$$

\square Terminal condition

$$
G(x):=\inf \left\{y \mathrm{x}(x, y)+g_{0}(\mathrm{x}(x, y))-\mathfrak{I}(x, y): y=g_{1}(\mathrm{x}(x, y))\right\} .
$$

Pricing equation

\square A quasi-linear pde

$$
0=-\partial_{t} \mathrm{v}-\hat{\mu}(\cdot, \hat{y}) \partial_{x}[\mathrm{v}+\Im]-\frac{1}{2} \hat{\sigma}(\cdot, \hat{y})^{2} \partial_{x x}^{2}[\mathrm{v}+\Im]
$$

where

$$
\hat{\mu}(\cdot, y):=\frac{1}{2}\left[\partial_{x x}^{2} \mathrm{x} \sigma^{2}\right](\mathrm{x}(\cdot, y),-y) \text { and } \hat{\sigma}(\cdot, y):=\left(\sigma \partial_{x} \mathrm{x}\right)(\mathrm{x}(\cdot, y),-y)
$$

and

$$
\hat{y}(t, x):=\mathrm{x}^{-1}\left(x, x+f(x) \partial_{x} \mathrm{v}(t, x)\right)
$$Terminal condition

$$
G(x):=\inf \left\{y x(x, y)+g_{0}(\mathrm{x}(x, y))-\Im(x, y): y=g_{1}(\mathrm{x}(x, y))\right\}
$$

\square Perfect hedging : Smooth solution under additional conditions, leading to perfect hedging by following $Y=\hat{y}(\cdot, X)$.

Pricing equation

\square A quasi-linear pde

$$
0=-\partial_{t} \mathrm{v}-\hat{\mu}(\cdot, \hat{y}) \partial_{x}[\mathrm{v}+\Im]-\frac{1}{2} \hat{\sigma}(\cdot, \hat{y})^{2} \partial_{x x}^{2}[\mathrm{v}+\Im]
$$

where

$$
\hat{\mu}(\cdot, y):=\frac{1}{2}\left[\partial_{x x}^{2} \mathrm{x} \sigma^{2}\right](\mathrm{x}(\cdot, y),-y) \text { and } \hat{\sigma}(\cdot, y):=\left(\sigma \partial_{x} \mathrm{x}\right)(\mathrm{x}(\cdot, y),-y)
$$

and

$$
\hat{y}(t, x):=\mathrm{x}^{-1}\left(x, x+f(x) \partial_{x} \mathrm{v}(t, x)\right)
$$Terminal condition

$$
G(x):=\inf \left\{y x(x, y)+g_{0}(x(x, y))-\Im(x, y): y=g_{1}(x(x, y))\right\}
$$

\square Perfect hedging : Smooth solution under additional conditions, leading to perfect hedging by following $Y=\hat{y}(\cdot, X)$.
\square For $f \equiv 0$: recovers the usual delta hedging $Y=\partial_{x} \mathrm{v}(\cdot, X)$.

The case of covered options

B., G. Loeper, and Y. Zou. Hedging of covered options with linear market impact and gamma constraint. SIAM Journal on Control and Optimization, 55(5), 3319-3348, 2017.
\square The trader receives at inception a chosen (by the trader) quantity of cash and stocks, and delivers at maturity a quantity of cash and stocks (chosen by the trader). The initial number of stocks equates the required delta to start the hedging, the quantity of stocks delivered at maturity equates the delta at maturity.

The case of covered options

B., G. Loeper, and Y. Zou. Hedging of covered options with linear market impact and gamma constraint. SIAM Journal on Control and Optimization, 55(5), 3319-3348, 2017.
\square The trader receives at inception a chosen (by the trader) quantity of cash and stocks, and delivers at maturity a quantity of cash and stocks (chosen by the trader). The initial number of stocks equates the required delta to start the hedging, the quantity of stocks delivered at maturity equates the delta at maturity.Super-hedging price :

$$
\mathrm{v}(t, x):=\inf \left\{v=c+y x: c, y,(a, b) \text { s.t. } V_{T} \geq g\left(X_{T}\right)\right\} .
$$

(Recall that $V=$ cash $+Y X$)

Hedging and pricing - informal derivation

Let us assume that we use the delta-hedging rule :

$$
V=\mathrm{v}(\cdot, X) \quad, \quad Y=\partial_{\times} \mathrm{v}(\cdot, X)
$$

Hedging and pricing - informal derivation

Let us assume that we use the delta-hedging rule :

$$
V=\mathrm{v}(\cdot, X) \quad, \quad Y=\partial_{\times} \mathrm{v}(\cdot, X)
$$

Then, equating the $d t$ terms implies

$$
\frac{1}{2} a^{2} f(X)=\partial_{t} \mathrm{v}(\cdot, X)+\frac{1}{2}\left(\sigma^{a}\right)^{2} \partial_{x x}^{2} \mathrm{v}(\cdot, X)
$$

Hedging and pricing - informal derivation

Let us assume that we use the delta-hedging rule :

$$
V=\mathrm{v}(\cdot, X) \quad, \quad Y=\partial_{\times} \mathrm{v}(\cdot, X)
$$

Then, equating the $d t$ terms implies

$$
\frac{1}{2} a^{2} f(X)=\partial_{t} \mathrm{v}(\cdot, X)+\frac{1}{2}\left(\sigma^{a}\right)^{2} \partial_{x x}^{2} \mathrm{v}(\cdot, X),
$$

and applying Itô's Lemma to $Y-\partial_{x} \mathrm{v}(\cdot, X)$ leads to

$$
\gamma^{a}:=\frac{a}{\sigma+f_{a}}=\partial_{x x}^{2} v(\cdot, X) \in \mathbb{R} \backslash\{1 / f\}
$$

Hedging and pricing - informal derivation

Let us assume that we use the delta-hedging rule :

$$
V=\mathrm{v}(\cdot, X) \quad, \quad Y=\partial_{\times} \mathrm{v}(\cdot, X)
$$

Then, equating the $d t$ terms implies

$$
\frac{1}{2} a^{2} f(X)=\partial_{t} \mathrm{v}(\cdot, X)+\frac{1}{2}\left(\sigma^{a}\right)^{2} \partial_{x x}^{2} \mathrm{v}(\cdot, X),
$$

and applying Itô's Lemma to $Y-\partial_{x} \mathrm{v}(\cdot, X)$ leads to

$$
\gamma^{a}:=\frac{a}{\sigma+f_{a}}=\partial_{x x}^{2} \mathrm{v}(\cdot, X) \in \mathbb{R} \backslash\{1 / f\}
$$

By definition of γ^{a} and a little bit of algebra :

$$
\left[-\partial_{t} v-\frac{1}{2} \frac{\sigma^{2}}{\left(1-f \partial_{x x}^{2} v\right)} \partial_{x x}^{2} v\right](\cdot, X)=0
$$

The pricing pde should be

$$
\begin{aligned}
-\partial_{t} \mathrm{v}-\frac{1}{2} \frac{\sigma^{2}}{\left(1-f \partial_{x x}^{2} \mathrm{v}\right)} \partial_{x x}^{2} \mathrm{v} & =0 & & \text { on }[0, T) \times \mathbb{R}, \\
\mathrm{v}(T-, \cdot) & =g & & \text { on } \mathbb{R} .
\end{aligned}
$$

The pricing pde should be

$$
\begin{array}{rll}
-\partial_{t} \mathrm{v}-\frac{1}{2} \frac{\sigma^{2}}{\left(1-f \partial_{x x}^{2} \mathrm{v}\right)} \partial_{x x}^{2} \mathrm{v}=0 & \text { on }[0, T) \times \mathbb{R}, \\
\mathrm{v}(T-, \cdot)=g & \text { on } \mathbb{R} .
\end{array}
$$

Singular pde:

- Can find smooth solutions s.t. $1>f \partial_{x x}^{2} v$, cf. below.
- In general, needs to take care of $1 \neq f \partial_{x x}^{2} v$
- One possibility : add a gamma constraint $\partial_{x x}^{2} \mathrm{v} \leq \bar{\gamma}$ with $f \bar{\gamma}<1$.
- A constraint of the form $f \partial_{x x}^{2} v>1$ does not make sense.

Hedging with a gamma contraint

\square By a change of variable, we write the dynamics in the form :

$$
d Y=\gamma^{a}(X) d X+\mu_{Y}^{a, b}(X) d t \text { and } d X=\sigma^{a}(X) d W+\mu_{X}^{a, b}(X) d t
$$

\square We now define v with respect to the gamma constraint

$$
\gamma^{a}(X) \leq \bar{\gamma}(X)
$$

with

$$
f \bar{\gamma}<1-\varepsilon, \quad \varepsilon>0 .
$$

Pricing pde :

$$
\min \left\{-\partial_{t} \mathrm{v}-\frac{1}{2} \frac{\sigma^{2}}{\left(1-f \partial_{x x}^{2} \mathrm{v}\right)} \partial_{x x}^{2} \mathrm{v}, \bar{\gamma}-\partial_{x x}^{2} \mathrm{v}\right\}=0 \quad \text { on }[0, T) \times \mathbb{R} .
$$

Propagation of the gamma contraint at the boundary:

$$
\mathrm{v}(T-, \cdot)=\hat{\mathrm{g}} \quad \text { on } \mathbb{R}
$$

with \hat{g} the smallest (viscosity) super-solution of

$$
\min \left\{\varphi-g, \bar{\gamma}-\partial_{x x}^{2} \varphi\right\}=0
$$

See Soner and Touzi 00, and Cheridito, Soner and Touzi 05.

Adding a resilience effect

\square Given a speed of resilience $\rho>0$,

$$
\begin{aligned}
& X^{n}=X_{0}+\int_{0} \sigma\left(X_{s}^{n}\right) d W_{s}+R^{n}, \\
& R^{n}=R_{0}+\sum_{i=1}^{n} \mathbf{1}_{\left[t_{i}^{n}, T\right]} \delta_{t_{i}^{n}}^{n} f\left(X_{t_{i}^{n-}}^{n}\right)-\int_{0} \rho R_{s}^{n} d s .
\end{aligned}
$$

Adding a resilience effect

\square Given a speed of resilience $\rho>0$,

$$
\begin{aligned}
& X^{n}=X_{0}+\int_{0} \sigma\left(X_{s}^{n}\right) d W_{s}+R^{n}, \\
& R^{n}=R_{0}+\sum_{i=1}^{n} \mathbf{1}_{\left[t_{i}^{n}, T\right]} \delta_{t_{i}^{n}}^{n} f\left(X_{t_{i}^{n}-}^{n}\right)-\int_{0} \rho R_{s}^{n} d s .
\end{aligned}
$$

The continuous time dynamics becomes

$$
\begin{aligned}
& X=X_{0}+\int_{0} \sigma\left(X_{s}\right) d W_{s}+\int_{0} f\left(X_{s}\right) d Y_{s}+\int_{0}\left(a_{s}\left(\sigma f^{\prime}\right)\left(X_{s}\right)-\rho R_{s}\right) d s \\
& R=R_{0}+\int_{0} f\left(X_{s}\right) d Y_{s}+\int_{0}\left(a_{s}\left(\sigma f^{\prime}\right)\left(X_{s}\right)-\rho R_{s}\right) d s \\
& V=V_{0}+\int_{0} Y_{s} d X_{s}+\frac{1}{2} \int_{0} a_{s}^{2} f\left(X_{s}\right) d s .
\end{aligned}
$$

Extension : abstract impact model

B., G. Loeper, M. Soner and C. Zhou. Second order stochastic target problems with generalized market impact. Arxiv :1806.08533, 2018.
\square A general impact function :

$$
\begin{aligned}
& X=x+\int_{t} \mu\left(s, X_{s}, \gamma_{s}, b_{s}\right) d s+\int_{t} \sigma\left(s, X_{s}, \gamma_{s}\right) d W_{s} \\
& Y=y+\int_{t} b_{s} d s+\int_{t} \gamma_{s} d X_{s} \\
& V=v+\int_{t} F\left(s, X_{s}, \gamma_{s}\right) d s+\int_{t} Y_{s} d X_{s}
\end{aligned}
$$

This allows to model : permanent impact, immediate partial relaxation of the impact, modified liquidity cost, and can easily add resilience.

$$
\begin{aligned}
& X=x+\int_{t} \mu\left(s, X_{s}, \gamma_{s}, b_{s}\right) d s+\int_{t} \sigma\left(s, X_{s}, \gamma_{s}\right) d W_{s} \\
& Y=y+\int_{t} b_{s} d s+\int_{t} \gamma_{s} d X_{s} \\
& V=v+\int_{t} F\left(s, X_{s}, \gamma_{s}\right) d s+\int_{t} Y_{s} d X_{s}
\end{aligned}
$$

This allows to model : permanent impact, immediate partial relaxation of the impact, modified liquidity cost, and can easily add resilience.Relaxation of the gamma constraint. Can be as close as one wants to the singularity :

$$
\min \left\{-\partial_{t} \mathrm{v}-\bar{F}\left(\cdot, \partial_{x x}^{2} \mathrm{v}\right), \bar{\gamma}-\partial_{x x}^{2} \mathrm{v}\right\}=0 \text { on }[0, T) \times \mathbb{R},
$$

where

$$
\bar{F}(t, x, z):=\frac{1}{2} \sigma(t, x, z)^{2} z-F(t, x, z)
$$

and

$$
\{\bar{F}<\infty\}=\{F<\infty\}=\{(t, x, z): z<\bar{\gamma}(t, x)\} .
$$

Expansion around 0 impact

\square Scaling :

$$
\begin{aligned}
& X=x+\int_{t} \mu\left(s, X_{s}, \epsilon \gamma_{s}, b_{s}\right) d s+\int_{t} \sigma\left(s, X_{s}, \epsilon \gamma_{s}\right) d W_{s} \\
& V=v+\int_{t} \epsilon^{-1} F\left(s, X_{s}, \epsilon \gamma_{s}\right) d s+\int_{t} Y_{s} d X_{s}
\end{aligned}
$$

Expansion around 0 impact

\square Scaling :

$$
\begin{aligned}
& X=x+\int_{t} \mu\left(s, X_{s}, \epsilon \gamma_{s}, b_{s}\right) d s+\int_{t} \sigma\left(s, X_{s}, \epsilon \gamma_{s}\right) d W_{s} \\
& V=v+\int_{t} \epsilon^{-1} F\left(s, X_{s}, \epsilon \gamma_{s}\right) d s+\int_{t} Y_{s} d X_{s}
\end{aligned}
$$

$\square \mathrm{In}$ the initial model, it amongs to considering ϵf in place of f.

Expansion around 0 impact

\square Scaling :

$$
\begin{aligned}
& X=x+\int_{t} \mu\left(s, X_{s}, \epsilon \gamma_{s}, b_{s}\right) d s+\int_{t} \sigma\left(s, X_{s}, \epsilon \gamma_{s}\right) d W_{s} \\
& V=v+\int_{t} \epsilon^{-1} F\left(s, X_{s}, \epsilon \gamma_{s}\right) d s+\int_{t} Y_{s} d X_{s}
\end{aligned}
$$

\square In the initial model, it amongs to considering ϵf in place of f.
\square Expansion performed around the solution v^{0} of $\left(\partial_{z} \bar{F}(\cdot, 0)=: \partial_{z} \bar{F}_{0}\right)$

$$
\partial_{t} \mathrm{v}^{0}+\partial_{z} \bar{F}_{0} \partial_{x \times}^{2} \mathrm{v}^{0}=0 \text { on }[0, T) \times \mathbb{R} \text { and } \mathrm{v}^{0}(T, \cdot)=\hat{g} \text { on } \mathbb{R} .
$$

Proposition :

$$
\begin{aligned}
\mathrm{v}^{\epsilon}(0, x) & =\mathrm{v}^{0}(0, x)+\frac{\epsilon}{2} \mathbb{E}\left[\int_{0}^{T}\left[\partial_{z z}^{2} \bar{F}_{0}\left|\partial_{x x}^{2} \mathrm{v}^{0}\right|^{2}\right]\left(s, \tilde{X}_{s}^{0}\right) d s\right]+o(\epsilon) \\
& =\mathrm{v}^{0}(0, x)+\frac{\epsilon}{2} \mathbb{E}\left[\partial_{x} \hat{g}\left(T, \tilde{X}_{T}^{0}\right) \tilde{Y}_{T}\right]+o(\epsilon)
\end{aligned}
$$

where

$$
\begin{aligned}
\tilde{X}^{z} & =x+\int_{t}\left(2 \partial_{z} \bar{F}\left(\cdot, z \partial_{x x}^{2} v^{0}\right)\right)^{\frac{1}{2}}\left(s, \tilde{X}_{s}^{z}\right) d W_{s}, \\
\tilde{Y} & =\frac{1}{\sqrt{2}} \int_{t} \frac{\partial_{x} \partial_{z} \bar{F}_{0}\left(s, \tilde{X}_{s}^{0}\right) \tilde{Y}_{s}+\partial_{z z}^{2} \bar{F}_{0} \partial_{x x}^{2} v^{0}\left(s, \tilde{X}_{s}^{0}\right)}{\sqrt{\partial_{z} \bar{F}_{0}\left(s, \tilde{X}_{s}^{0}\right)}} d W_{s} .
\end{aligned}
$$

Proposition :

$$
\begin{aligned}
\mathrm{v}^{\epsilon}(0, x) & =\mathrm{v}^{0}(0, x)+\frac{\epsilon}{2} \mathbb{E}\left[\int_{0}^{T}\left[\partial_{z z}^{2} \bar{F}_{0}\left|\partial_{x x}^{2} \mathrm{v}^{0}\right|^{2}\right]\left(s, \tilde{X}_{s}^{0}\right) d s\right]+o(\epsilon) \\
& =\mathrm{v}^{0}(0, x)+\frac{\epsilon}{2} \mathbb{E}\left[\partial_{x} \hat{g}\left(T, \tilde{X}_{T}^{0}\right) \tilde{Y}_{T}\right]+o(\epsilon)
\end{aligned}
$$

where

$$
\begin{aligned}
\tilde{X}^{z} & =x+\int_{t}\left(2 \partial_{z} \bar{F}\left(\cdot, z \partial_{x x}^{2} v^{0}\right)\right)^{\frac{1}{2}}\left(s, \tilde{X}_{s}^{z}\right) d W_{s} \\
\tilde{Y} & =\frac{1}{\sqrt{2}} \int_{t} \frac{\partial_{x} \partial_{z} \bar{F}_{0}\left(s, \tilde{X}_{s}^{0}\right) \tilde{Y}_{s}+\partial_{z z}^{2} \bar{F}_{0} \partial_{x x}^{2} v^{0}\left(s, \tilde{X}_{s}^{0}\right)}{\sqrt{\partial_{z} \bar{F}_{0}\left(s, \tilde{X}_{s}^{0}\right)}} d W_{s}
\end{aligned}
$$

\square The leading order term allows for super-hedging with \mathbf{L}^{∞}-error controlled by ϵ^{2}.

Dual formulation

In the concave case:$$
\begin{aligned}
\mathrm{v}(t, x) & =\sup _{\mathfrak{s}} \mathbb{E}\left[\hat{g}\left(X_{T}^{t, x, \mathfrak{s}}\right)-\int_{t}^{T} \bar{F}^{*}\left(s, X_{s}^{t, x, \mathfrak{s}}, \mathfrak{s}_{s}^{2}\right) d s\right] \\
& =\sup _{\mathfrak{s}} \mathbb{E}\left[g\left(X_{T}^{t, x, \mathfrak{s}}\right)-\int_{t}^{T} \bar{F}^{*}\left(s, X_{s}^{t, x, \mathfrak{s}}, \mathfrak{s}_{s}^{2}\right) d s\right]
\end{aligned}
$$

in which

$$
X^{t, x, \mathfrak{s}}=x+\int_{t} \mathfrak{s}_{s} d W_{s}
$$

Dual formulation

\square In the concave case :

$$
\begin{aligned}
\mathrm{v}(t, x) & =\sup _{\mathfrak{s}} \mathbb{E}\left[\hat{g}\left(X_{T}^{t, x, \mathfrak{s}}\right)-\int_{t}^{T} \bar{F}^{*}\left(s, X_{s}^{t, x, \mathfrak{s}}, \mathfrak{s}_{s}^{2}\right) d s\right] \\
& =\sup _{\mathfrak{s}} \mathbb{E}\left[g\left(X_{T}^{t, x, \mathfrak{s}}\right)-\int_{t}^{T} \bar{F}^{*}\left(s, X_{s}^{t, x, \mathfrak{s}}, \mathfrak{s}_{s}^{2}\right) d s\right]
\end{aligned}
$$

in which

$$
X^{t, x, \mathfrak{s}}=x+\int_{t} \mathfrak{s}_{s} d W_{s}
$$In the previous model :

$$
\bar{F}^{*}\left(t, x, s^{2}\right)=\frac{1}{2} \frac{(s-\sigma(t, x))^{2}}{f(x)}, \text { for } s \geq 0
$$

Open problems

No constraint at all on the gamma?
Dual formulation in a non-Markovian framework?

Generic completeness?

Existence/stability of FBSDE with impact?

Open problems

No constraint at all on the gamma?
Dual formulation in a non-Markovian framework?

Generic completeness?

Existence/stability of FBSDE with impact?

Thank you!

References

F. Abergel and G. Loeper.Pricing and hedging contingent claims with liquidity costs and market impact. SSRN.
D. Becherer and T. Bilarev.

Hedging with transient price impact for non-covered and covered options. arXiv: 1807.05917.
B. Bouchard and M. Nutz.

Stochastic target games and dynamic programming via regularized viscosity solutions. Mathematics of Operation Research, 41(1), 109-124, 2016.
U. Çetin, R. A. Jarrow, and P. Protter.

Liquidity risk and arbitrage pricing theory.
Finance Stoch., 8(3):311-341, 2004.
U. Çetin, H. M. Soner, and N. Touzi.

Option hedging for small investors under liquidity costs.
Finance Stoch., 14(3) :317-341, 2010.
P. Cheridito, H. M. Soner, and N. Touzi.

The multi-dimensional super-replication problem under gamma constraints.
In Annales de I'IHP Analyse non linéaire, volume 22, pages 633-666, 2005.
R. Frey.

Perfect option hedging for a large trader.
Finance and Stochastics, 2 :115-141, 1998.
R. Jensen.

The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations.
Arch. Rational Mech. Anal., 101(1) :1-27, 1988.
G. Loeper.

Option Pricing with Market Impact and Non-Linear Black and Scholes PDEs. SSRN.
G. Loeper.

Solution of a fully non-linear Black and Scholes equation coming from a linear market impact model. SSRN.
P. J. Schönbucher and P. Wilmott.

The feedback effects of hedging in illiquid markets.
SIAM Journal on Applied Mathematics, 61 :232-272.
H. M. Soner and N. Touzi.

Superreplication under gamma constraints.
SIAM J. Control Optim., 39 :73-96, 2000.

